EA : Cooperative Inverse Reinforcement Learning
Link to the associated code

Martin DRIEUX, Adrien GOLDSZAL, Edouard RABASSE

Contents

1 Introduction 1
2 Paper Presentation 1
2.1 The CIRL Framework 1
2.2 Key Principles 2
2.3 From CIRL to POMDP 2
2.3.1 POMDP definition 2

2.3.2 Reformulation of CIRL as
POMDP. 2
2.4 Clarification of the ACIRL. 2
2.5 Generating instructive demonstrations 3
3 Our implementation of the paper 4
3.1 Implementation details 4
3.1.1 Demonstration by Expert Policy 4
3.1.2 Best Response 4
3.1.3 Maximum Entropy IRL 4
3.2 Result analysis and comparison 4
3.2.1 Trajectories 5
322 Results b)
4 Real CIRL 5
4.1 Motivation 5
4.2 Solving POMDP 5
43 LinktoCIRL 6
4.4 A more efficient formulation 6
4.5 Our implementation 7

4.6 Application : collaboration gridSpace . 7

5 Conclusions 8

1 Introduction

In reinforcement learning (RL), an agent interacts
with its environment, maximizing its cumulative re-
ward over time and therefore learning a policy dic-
tating its actions based on states and observations.
However, one critical issue in RL is the alignment
problem: if the reward function is not correct, the
result computed will not be correct either. The In-
verse Reinforcement Learning (IRL) framework tries
to address this by estimating reward functions by ob-
serving behaviors that maximize that reward function
(for instance, a recommendation algorithm that infers
your tastes from the videos you watch). The Cooper-
ative Inverse Reinforcement Learning (CIRL) frame-
work goes one step further: it introduces an agent
which has perfect knowledge of the reward function
(referred to as the "human” in the article), which is
incentivized to convey it to another agent with its
behavior (the other agent is called a "robot”). Al-
though this work was initially developed for robotics,
the terms "human” and “robot” can refer to a much
broader class of agents.

2 Paper Presentation

2.1 The CIRL Framework

Preliminary Assumptions From the start, the pa-
per makes some important assumptions on the CIRL
framework and applies it to a specific human and
robot collaboration scenario, moving away from the
general CIRL. More specifically, in this context, the
human (H) knows the complete reward function.

Knowing these specificities, we can formally define the

CIRL framework in our case as :

M = <X7 {AH7~AR}7T(' | '7'7')7{@7R('v'7';')}7

PO('v ')7 Vs h>
where:
e X: State space.

o Af: Human action space.

« A’ Robotic action space.
e T(s'| s,am,agr): Transition dynamics : proba-
bility of going from a state s to state s’, after

actions ayg and ag

e O: Reward parameter space (it is used to define
the reward function)

e R(-,+,+;): Reward function (depends on current
states actions, and is parametrized by 6)

e Py(+,-): Initial and reward parameter and state
distribution.

e v: Discount factor.

e h € R: Horizon of the problem (number of
states)

https://github.com/adriengoldszal/Cooperative-Inverse-Reinforcement-Learning

2.2 Key Principles

e Solving the CIRL means finding joint optimal
policies (which are functions that map the his-
tory of actions and states to actions for the next

step)

e The reward function is shared for both agents,
which incentivizes collaboration. That makes it
differ from RL and IRL

o The human may act sub-optimally (by compar-
ing to a situation where he would only maximize
its own function) to convey information about

0. -

e The robot interprets the human’s actions to up-
date its belief about ©.

2.3 From CIRL to POMDP
2.3.1 POMDP definition

A partially observed decision process (PODMP) ex-
tends a MDP and is defined as follows : Mpompp =
<X, A7 Zobser'uationa O(| Yy ')a T(| Yy ')7 {97 R(7))}a
PO('? ')7 Ys h>

e S : State space
e A : Set of actions

o T(z'|z,a) : Transitions, a probability distribu-
tion describing how the environment transitions
from states = to =’ given action a

Zopservation : Observation space, partial informa-
tion the agent receives about the state

e O(o|a’,a) : observation function, probability
distribution over observations given the new
state s’ and action a.

o R(x) :

state x

reward function the agent receives in

e b : belief state, a probability distribution over
states that represent the agent estimate of the
current state.

e Py(-,-): Initial state distribution.
e ~: Discount factor.

e h € R: Learning phase duration.

2.3.2 Reformulation of CIRL as POMDP

Initially, we might see the CIRL as a multi-agent
POMDP, computing the optimal joint policy for this
kind of problem is NEXP-complete. However, the pa-
per proves that CIRL problem can be reduced to a co-
ordination-POMDP (which is still expensive to com-
pute but more reasonable, see section 4.3 for more

Cooperative Inverse Reinforcement Learning

details). In this setup, the single actor is a coordi-
nator C. The states are S¢ = S X ©, where S was
the original state space. C actions are (67, a’’), spec-
ifying an action for the robot R and a decision rule
for the human H : 67 : © — AY depending on the
reward parameter.

The coordinator observes the human actions and up-
dates its belief b(¢) on the distribution of §. We can
describe the CIRL as a coordPOMDP as follows :

M’ = ((X x ©), (A" x A®) (X x A™),0,T,
@, R(‘)77?PO>

The transition T’ is defined as follows :
T'((z',60")|(x,0), (ar, 6™) = Lo—p T(2' |z, ar, 6" (6))
where T is the original transition dynamic.

The observation function O is :
Oz, o™ |z, 67 a®,0) = 1(2/,a™) = (x,67(0)))

The coordinator only observes the physical state and
the human action.

The coordination-POMDP is illustrated on figure 1.

Then, the paper uses a property of POMDP! : an
optimal policy only depends on the belief state. As a
result, we can compute the best policy for both the
human and the robot knowing only b(#) and without
knowing the history of actions.

Coordinator

influences
——————————»

Figure 1: Coordination-POMDP

2.4 Clarification of the ACIRL

The authors introduce Apprenticeship CIRL a turn-
based game composed of 2 phases : a learning phase
during which only the human takes actions, and a de-
ployment phase where only the robot acts. The author

claim that this a type of CIRL, which is not obvious
at first since only one actor takes actions during each
phase. However, enforcing strong constraints on the
policies, we managed to formulate this as a special
type of CIRL. The ACIRL is defined as follows:

M = (S, { A" AP} T(-|), {0, R(, -,)},

Po(-,-)s v, 1)

where:

e S: state space,

o AH: human action space,

« A": robotic action space,

e T(-]+-,+): transition dynamics,

o O: reward parameter space,

e R(-,-,-;): reward function,

e Py(+,-): initial state distribution,

e ~: discount factor,

e h € R: learning phase duration.

Under the additional constraint that there exists a
NOOP (no operation) action such that:

NOOP € A" NOOP € A¥ (no operation) such that:

And the admissible policies are such that (the * oper-
ator designates an history):

vulfl € [AT x AT x S]* x O,
7 (u) = NOOP if length of u > h

vult € [AT x AR x S]*,
7l (uf) = NOOP if length of u®® < h

In this formulation:

o u!l represents the history of human and robotic
actions as well as states during the learning

phase.

u® represents the history of robotic actions, hu-

man actions, and states.

e h is used to separate the learning and deploy-
ment phases.

e The human policy =« becomes inac-
tive (NOOP) after the learning phase
(length of u > h).

« The robotic policy 7% remains inactive (NOOP)
as long as the learning phase is not completed
(length of u® < h).

Cooperative Inverse Reinforcement Learning

2.5 Generating instructive demonstra-
tions

In this ACIRL environment, the robot’s optimal pol-
icy greedily maximizes reward from the mean 6 from
its belief in the deployment phase :

iy = argmax E [R(s, 7r(s) | 0)
The key insight here is that, knowing this robot be-

haviour, the human’s best response may not a demon-
stration by expert (DBE) maximizing its own reward.

To establish some results on ACIRL and possible best
responses, the paper uses a specific framework and
makes some assumptions without stating them explic-
itly. Here are these assumptions:

1. Rewards are a linear combination of state fea-
tures for a certain feature function :

¢ : R(s,a™,a™;0) = ¢(s) "0

In that case, two policies with the same expected
feature counts p will have the same values.

VT =E lz Y R(s | w)]
t=0

ZV%(S:&) \ W}

t=0

=0 pu(m)

=0-E

This means that a learned policy that matches
the feature counts of the observed policy will be
as good as the demonstration for any given 6

2. R uses an IRL algorithm that computes its be-
lief on @ specifically by maximizing feature
counts, as Maximum-Entropy IRL for example.

This two assumptions ensure that the robot’s policy
TR = argmax B [®(m)] - 6

will match the expected feature counts of the learning
phase. In fact, we see through this equation that there
is no reason the expected feature counts match if the
belief through IRL wasn’t computed through an algo-
rithm that does. This underlying assumption wasn’t
detailed in the paper. In fact, there exist IRL algo-
rithms such as Adversarial IRL that do not compute
a belief on # by matching expected feature counts.

Knowing this feature count matching, the paper pro-
poses the following heuristic for the human, to gen-
erate better demonstrations by matching the feature
counts with those of the distribution of trajectories
induced by 6 : ¢y

™ argmax ¢(1)-0 —nll¢e — o(7)|?
T —— N———r

Sum of rewards
for the human

Feature
dissimilarity

Cooperative Inverse Reinforcement Learning

3 Our implementation of the paper

3.1 Implementation details

We implement this turn-based ACIRL on a 10x10
gridworld environment. The paper provided the
heuristic as well as the overall method; however,
no code was provided, and concrete implementation
choices were ours.

In this setting, n feature centers are chosen on the
grid. The vector ¢(z) of size n represents the dis-
tance of x to each of those centers. For each state,
the agents obtain a reward ¢(x)76. Only the human
knows 6, while the robot knows where the feature cen-
ters are but not the values associated with them.

The goal for the agents is to maximize the global re-
T
ward: Y1, 5'g(wr) - 0.

3.1.1 Demonstration by Expert Policy

The demonstration by expert greedily maximizes re-
ward on its turn. To get this DBE policy, we first
calculate the value function associated with the pol-
icy by iteratively updating the values for each state
until convergence through a Bellman update:

V(s) + mgx[R(s, a,s) +~vV(s")]

We can then get the policy from the value function
through the same process:

Thpe(s) = argmax[R(s, a, s") + 7V (s)]

3.1.2 Best Response

To get a working best response, the expected feature
counts of the whole distribution of trajectories induced
by the real 6 need to be calculated: ¢9. We calculate
this value by averaging over the feature counts of the
policies from the optimal trajectory starting from each
possible state on the grid.

3.1.3 Maximum Entropy IRL

Maximum Entropy IRL[Y is a type of IRL that is
based on feature expectation matching. The idea is
to find a distribution of trajectories that maximizes
entropy (and therefore minimizes information, i.e.,
any biases), as there are multiple solutions to the op-
timization problem.

We find the probability distribution over trajectories
p(7), or, knowing our reward structure p(7 | §), max-
imizing entropy H under constraints:

arg max H(p)
P
subject to EFH[¢(T)] = ETFR[(ZS(T)}
Zp(T) =1, VY7:p(r) >0 (probability constraints)

We get p(7 | 0) by solving our optimization problem
through Lagrange multipliers, and then optimize for
f by maximizing the log-likelihood.

0* = arg max L(0) = arg max logp(7 | 6)

Deriving, we get the gradient:
VoL(0) = Ere[d(T)]=p(T | 0)¢(7) = Err[d(T)]=Dro(s7)

where D, is the state visitation frequency.

How does the algorithm work? We adapted the
implementation from Maximilian Luz['!, PhD student
at the University of Freiburg.

Knowing the terminal state of the trajectory, we can
compute through a backward pass the local ac-
tion probabilities, i.e., the probabilities of selecting
a particular action in a given state, as inferred by
the demonstration trajectory. We can then calculate
(forward pass) the state visitation frequencies
(SVF), knowing the initial position of the demon-
stration trajectory.

3.2 Result analysis and comparison

We ran the ACIRL framework on the 10x10 grid, with
a horizon of 16 (trajectory length of 8 for human and
robot), for 3 and 10 feature counts. This simulation
was run 50 times and the results analyzed.

3.2.1 Trajectories

Ground truth reward

Best Response Policy

Expert Policy

0
2
a

y

8

o 2 a 6 8

Figure 2: Best response vs Expert demonstration with
inferred reward values from the robot

Figure 1 illustrates the impact of the feature count
matching term in the best response in this example
with three features. The best response trajectory ex-
plicitly goes to the two lower feature centers instead of
just maximizing its own reward (DBE). The inferred
6 by the robot and therefore the reward structure are
closer to the ground truth in the best response thanks

to the better demonstration.
I I

110GT -6l

3.2.2 Results

num-features = 3

num-features = 10
EE
. . .
. . |
. . . i

Ragrat 11667 -f

Figure 3: Results comparison: Best response vs Ex-
pert demonstration

Cooperative Inverse Reinforcement Learning

We compare the results of the best response and ex-
pert trajectories on three similarity measures:

» Regret: the difference in the value of the policy
that maximizes the inferred 6 and the value of
the policy that maximizes the true 6.

regret = V™0 — Ve

+ The KL divergence between the trajectory dis-
tributions induced by 6 and 6.

P@) = Z Z Pé(s,a) IOg %

seSacA

Dk (P

e The L2 Norm as a simpler proxy for the regret:

16— 4]l

The results are less conclusive than the ones presented
by the paper, as the standard deviation from the mean
is large, especially for the regret. Nevertheless, the
best response generally makes the robot infer better
results, closer to the true #, than the expert demon-
stration.

4 Real CIRL

4.1 Motivation

After introducing the CIRL framework, the paper
makes a number of strong assumptions (many being
unstated) in order to apply it to its robotics appli-
cation. This approach results in a loss of generality
which does not fully tap into the whole potential of the
framework introduced. Indeed, the case developed in
the above part has more to do with optimal teaching
than a collaborative game (which is still interesting
but more restrictive).

We therefore wanted to work in a more general set-
ting and use an algorithm specifically devised for the
structure of CIRL problems, and which can solve them
without loss of generality. This approach has enabled
us to avoid using approximation tricks with functions

developed for other applications (as above with the
specific Maximum-Entropy IRL algorithm).

In this part, we develop an algorithm to compute ex-
act solutions of the CIRL, that is more efficient than
default methods.

4.2 Solving POMDP

There exist several standard algorithms to fully solve
POMDPs. One of the exact methods is the Witness
Algorithm:

Algorithm 1: Witness Algorithm
1. Initialize: T < set of height-1 plans (i.e.,
actions)
W« 0 (set of witnesses)
2. for tin {1,2,...,7} do
(a) IV« T
(b) T' + set plans made of an action and
map from observations to plans in I
(c) for o = (af*,v) €T do
i. for s € S do
A. for af € A do

B. Compute:
av(a”)(s) = R(S)

+ Pst’ ZGH P(SI7aH ‘
8,0)Qy (g (8")

C. if a,u) cannot be domi-
nated by any element of W
then

D. W<+ Wu {Oév(aH)}
(d) T < Prune(I', W)
3. Return T’

The Witness Algorithm constructs optimal condi-
tional plans for the POMDP by iteratively refining
the set of candidate plans.

Conditional Plans A conditional plan ¢ = (a,v)
consists of a robot action a® and a mapping v that
assigns observations to further plans. This recursive
structure allows adaptive decision-making based on
observations (a plan can produce a policy).

Alpha-Vectors Each plan o is associated with an
alpha-vector «, representing the value function over
the state space S. For a belief state b, the value func-
tion is:

V(b) = max b(s)a(s).
seS

Witness Set W : W is the set of non-dominated
alpha-vectors. It helps prune suboptimal plans by en-
suring that only the best plans remain in I' (a plan is

suboptimal if another one has a superior value for all
beliefs).

Pruning and Bellman Update - Pruning re-
moves plans with alpha-vectors dominated by others
in W. - The computation of alpha-vectors resembles a
Bellman update, recursively calculating values based
on immediate rewards and future values.

4.3 Link to CIRL

As seen above, a generic POMDP is expressed as
MPOMDP = <S,A, Zobservationao(' | a)aT(|

Cooperative Inverse Reinforcement Learning

%y ')7 {C—)a R(a))}7
Py(+,-),7,h) and a CIRL can be reformulated as :

M = {(x x @), (AT x ARY, (X x AH), O,
97 R(| ')7 Tlv Y PO

The complexity of the witness algorithm on a generic
POMDP is :

O (t x |S]? x |A]? X | Zops|'T1)
Hence, on our CIRL, the complexity is :
O (t % \X|3 % ‘@‘3 % |AH‘2\®| % ‘AR‘Q % |X\t+1 < ‘AH‘t-Q—l)

Which is prohibitively expensive, even on small prob-
lems as the term |AX |29l is extremely costly: © is
often a very large space. This is probably why the
original article chose not to fully exploit the structure
of the problem to find solutions.

4.4 A more efficient formulation

The tremendous cost of computation comes from the
fact that the action space considered is extremely large
: for each action, we have to consider every combina-
tion of a robot action and of every possible response
plan of the human to a given 6. However, it is possible
to reduce the complexity by this term.

Indeed, in one of the proofs in the original article, the
authors highlight that the human knows the policy
of the robot, and can anticipate its response to any
action. That is what we are going to exploit here: in-
stead of considering every possible human action we
will only take the optimal one to maximize future re-
ward (this can be computed thanks to the recursive
nature of the algorithm). This approach was inspired
by an article on a similar subject .

For this we slightly reformulate the framework : The
action space is reduced to A, (the actions of the
human are ”automated”, as we will see), and the ob-
servation is the human action (for the robot). We
need to introduce the Q, which corresponds to the ex-
pected value starting at state s, taking action o and
a®?, given the mapping from observations to plan v of
the robot, and for reward 6 :

Q((Ev aHa aR7 v, 0) = Z T((E, aHa aRv x/)av(aH)(x/a 0)
3:./

At each step, the human takes the optimal action a*

a’* = arg max Q(z,a, a® v,)
a

This way the update of the alpha vector can be made
with the following formula :

ay(2,0) = R(x,0)+v Z T(x,a™*, ol 2")ovy(qrey (2, 0)

Cooperative Inverse Reinforcement Learning

with o = (aR, v) Ground truth reward
. . 0
This double recursive structure converges as the 0.75
length of the conditional plan decreases at each call.
This enables us to adapt the witness algorithm. . o0
0.25
Algorithm 2: Witness Algorithm with Q- . -
function and Optimal Human Action '
1. Initialize: " + set of height-1 plans; W «+ 0 ~0.25
2. fort € {1,2,...,T} do 3
, r -0.50
I < I'; T' < set of plans with ¢ and mapping v
from observations to plans in I/
-0.75
3. for each 0 = (a®,v) € T do 4
for x € X and 6 € © do
0 1 2 3 4
Compute:
afl* :argm%xQ(z,aH,aR,v,G) Figure 4: Example of a trajectory on a small grid

(vellow corresponds to robot actions, while red corre-

sponds to human actions
Update:

ay(z,0) = R(z, 0)+y E T(x, aH*,aR7x/)o¢v(aH*)(a:/,
. Ground truth reward

0
if @, not dominated by any « € W then W +«+ 0.75
WU {as}
4. T « Prune(T’, W) 0.50
5. Return I 0.25
0.00
. . -0.25
4.5 Owur implementation
-0.50
We coded from scratch a general solver, which out- 6
puts optimal policies if a valid CIRL problem is given -0.75
as an input, as well as an initial belief state.
-1.00
o 1 2 3 4 5 6 7

Figure 5: Example of a trajectory on a larger grid
4.6 Application : collaboration (yellow corresponds to robot actions, while red corre-
gridSpace sponds to human actions

~—

=

N

w

N

v

~

To apply this new approach, we chose to work on
a step by step collaborative version of the problem
developed in the article. The “robot” and the "hu-
man” are 2 players which can control a moving ob-
ject. They both choose a decision at each turn, and
the robot updates its belief based on the human’s ac-
tions. Here, the feature centers (which correspond to
gaussians) can have either, positive, negative or zero
value (0; € {-1,0,1}). In figure 4, we see that the
human indicates that the high value spot is up, and

The example in figure 5 illustrates that the robot does
not have perfect information : on its second step, it
chooses to go right (which is suboptimal) because the
human has not yet made any action that indicates
that the spot in (3,2) has a negative value (the hu-
man would have gone up if it did). The robot "un-
derstands” this (which means it updates its belief ac-
cordingly) afterwards, as the moves towards the spot
in (5,1) indicate.

the robot acts coherently as this single action is suffi- This example, and its subtlelties illustrate the class of
cient for it to understand that the higher spot has a complex problems that can be solved with the CIRL
positive value (its belief is updated in this way). approach.

Cooperative Inverse Reinforcement Learning

5 Conclusions

The Cooperative Inverse Reinforcement Learning (CIRL) framework, introduced in the foundational paper,
offers an innovative approach to solving the alignment problem in human-robot collaboration. By reformulating
CIRL as a Partially Observable Markov Decision Process (POMDP), the original work establishes a solid
theoretical foundation and demonstrates its potential in controlled environments.

We implemented a turn-based Apprenticeship CIRL (ACIRL) framework in a 10x10 gridworld environment,
addressing gaps in the original methodology with detailed explanations of key processes, such as trajectory gen-
eration, feature matching, and maximum entropy IRL. Additionally, we implemented a general CIRL algorithm,
which is more precise and comprehensive than ACIRL.

A major limitation of the original framework is its computational complexity. To address this, we drew inspi-
ration from recent research[’l. By automating the human’s optimal actions and leveraging recursive updates,
we reduced the action space size and computational cost, making policy computation more efficient—though it
remains computationally expensive.

Our work focused on fully leveraging the formalism introduced in the article. Future directions could include
exploring scenarios where the "human” has only partial information or where multiple robots are involved.

References

[1] Maximilian Luz. Maximum entropy inverse reinforcement learning, 08 2022. Accessed: 2024-12-14.

[2] Malayandi Palaniappan, Dhruv Malik, Dylan Hadfield-Menell, Anca Dragan, and Stuart Russell. Efficient
cooperative inverse reinforcement learning. ArXiv preprint, 2023. Accessed: 2024-12-14.

[3] Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable markov processes
over a finite horizon. Operations Research, 21(5):1071-1088, 1973.

[4] Brian Ziebart, Andrew Maas, and J. Bagnell. Maximum entropy inverse reinforcement learning. In Proceed-
ings of the 23rd AAAI Conference on Artificial Intelligence, pages 1433-1438, 01 2008.

	Introduction
	Paper Presentation
	The CIRL Framework
	Key Principles
	From CIRL to POMDP
	POMDP definition
	Reformulation of CIRL as POMDP

	Clarification of the ACIRL
	Generating instructive demonstrations

	Our implementation of the paper
	Implementation details
	Demonstration by Expert Policy
	Best Response
	Maximum Entropy IRL

	Result analysis and comparison
	Trajectories
	Results

	Real CIRL
	Motivation
	Solving POMDP
	Link to CIRL
	A more efficient formulation
	Our implementation
	Application : collaboration gridSpace

	Conclusions

