
1

Learning to play a 2-player adversarial game :
Cathedral

Final report

Simon Defradas Adrien Goldszal Gabriel Mercier Mathias Perez

Abstract—In this project, we teach agents to play the Cathedral
2-player board game. We first do a review of DQN and PPO
algorithms, study and optimize their performance in this setting.
This also implies adapting the environment to our needs. In
addition, we then test the Representation Learning method and
analyze its impact on the training objective.

I. INTRODUCTION

A. Learning 2-Player Adversarial Games

With this project, we wanted to study how an agent could
efficiently learn to play a two-player game. What were the
best methods in terms of training in this adversarial setting,
as well as the best algorithms. Going further, we wanted to
see how Representation Learning techniques could help to
scale and accelerate this learning.

Learning to play board games was one of the first elements
of the advent of RL, notably through the game of chess,
which was Demis Hassabis’s main motivation behind founding
Google DeepMind in 2014, which culminated with AlphaZero
in 2017 [1]. These 2-player adversarial games bring a unique
challenge to them because of their non-stationarity, the high
branching factor, and the sparse rewards.

Training such algorithms can be complicated. Should
supervision be involved? How should an opponent be crafted?
Or should it be purely self-play, as is increasingly the case
today. The question of structuring this adversarial self-play
setting is also challenging. Should there be two policies, or
just one? Choosing and tuning the optimal algorithm is also
crucial.

While algorithms like Proximal Policy Optimization
(PPO) demonstrate state-of-the-art performance on high
action spaces and multi-agent learning, works like those by
DeepMind and AlphaZero [2] show that having Monte-Carlo
Tree Search (MCTS) in addition to deep RL clearly improves
performance in adversarial 2 player games like Chess, for
example.

Deep Q-Networks (DQN) [3] is not a state-of-the-art model
for adversarial games. However, it remains a viable choice
with certain modifications. Its simplicity and accessibility
make it particularly attractive for experimentation, as it is
relatively easy to implement and requires fewer computational
resources compared to policy gradient methods.

An idea we also wanted to explore was Representation
Learning, or learning meaningful representations of the large
observation space, which can help reduce dimensionality,
improve generalization, and facilitate style separation in our
diffusion model. Various approaches exist for learning such
representations, including auto-encoders, contrastive learning,
and self-supervised learning methods [4].

We therefore decided to study a 2-player adversarial board
game called Cathedral [5], where dark and light factions
battle for terrain on a grid (or fortified village), by placing
pieces in turn-based fashion. This strategy game, for which
we found an open source, but very much unused, PettingZoo
environment [6], allowed us to implement and test our
algorithms.

Our code implementation can be found in https://github.
com/gabriel-mercier/Cathedral-RL-CL

II. BACKGROUND

Fig. 1. Illustration of the cathedral board game [6]

A. The Cathedral Game

The Cathedral game [5] involves two players trying to place
as many of their pieces as possible on a fixed 10×10 square
grid. The first player starts by placing a special piece, the
cathedral, shaped like a cross. This piece does not contribute
to the player’s score. Then, in a turn-based manner, each
player places one of their pieces on the board. The value
of each piece corresponds to its size in grid squares. The
objective is to get the highest score (i.e., to have put most
large pieces on the board) once there is no more space left
on the board.

An additional challenge in this game is the ability to encircle
an area using one’s pieces, creating ’territory’. This territory

https://github.com/gabriel-mercier/Cathedral-RL-CL
https://github.com/gabriel-mercier/Cathedral-RL-CL

2

becomes a protected zone: any opponent’s piece already within
it is immediately removed, and the opponent is prevented from
placing any new pieces inside. Successfully creating territory
is difficult and serves as a key strategic goal, in addition to
efficiently placing high value pieces.

B. Deep Q-Learning
Deep Q-Learning (DQN) leverages deep neural networks to

approximate the action value function Q(s, a). DQN is capable
of handling large state spaces by using a neural network as a
function approximator [3].

1) Replay Buffer and Target Network: As described in the
course, we used a Replay Buffer to break the correlations
between consecutive updates and a Target Network to reduce
instability.

In an adversarial setup, we use the following equation:

Q(s, a)← Q(s, a)+α
(
r - γmax

a′
Qt(s

′, a′)−Q(s, a)
)

(1)

We use a minus sign (−) instead of a plus sign (+) due to
the adversarial nature of the game. Unlike standard Q-learning,
where the agent maximizes its future reward, here the next
action a′ represents the opponent’s move, which we aim to
minimize.

2) Double DQN: Standard DQN suffers from an overes-
timation bias when computing the target Q-values. Double
DQN (DDQN) mitigates this by decoupling action selection
and value estimation [7] (see the Appendix).

a) Prioritized Experience Replay (PER): In standard
experience replay, transitions are sampled uniformly from the
buffer. However, in Prioritized Experience Replay, important
transitions, those with high temporal difference (TD) errors,
are sampled more frequently [8] (see the Appendix).

b) Exploration Strategies: ϵ-Greedy vs. Boltzmann: ϵ-
Greedy Exploration is described in the course. Boltzmann
Exploration: Instead of selecting the best action outright, the
Boltzmann exploration sample actions are based on a softmax
probability distribution over TD-errors (see the Appendix).

C. Proximal Policy Optimization (PPO)
PPO is often considered one of the state-of-the-art RL

algorithms and is often used in multi-agent settings. It also
has an advantage as it works with discrete action spaces,
unlike other algorithms such as Deep Deterministic Policy
Gradient (DDPG) and Twin Delayed DDPG (TD3).

1) Algorithm structure: PPO works in an actor-critic
way (policy θ and value function ϕ) but is on-policy. One
or multiple episodes Dk = {τi} are added to a buffer by
running the policy and then the PPO is updated at the end
and goes through the trajectories, computing advantages Ât

and discounted rewards R̂t before updating θ (actor) and ϕ
(critic). This step is done multiple times per update. [9]

The policy is updated via stochastic gradient ascent by
maximizing the PPO-Clip objective, the value function
is fitted by regression on mean-squared error and updated
by gradient descent. (See the Appendix for detailed equations)

2) Generalized Advantage Estimation (GAE): GAE [10] is
a technique used in PPO to reduce variance while maintaining
a low bias in advantage estimation. Instead of relying on a
single-step or Monte Carlo estimate of the advantage function,
GAE introduces a trade-off between bias and variance by using
a weighted sum of temporal-difference (TD) residuals. The
advantage function is estimated as:

Ât =

∞∑
l=0

(γλ)lδt+l (2)

where the TD residual is defined as:

δt = rt + γVϕ(st+1)− Vϕ(st) (3)

γ is the discount factor and λ is a smoothing parameter that
balances bias and variance.

D. Representation Learning with a Variational Autoencoder

Variational Autoencoders (VAEs) [11] are a class of
generative models that learn structured latent representations
of data by optimizing a probabilistic lower bound on the data
likelihood.

A VAE consists of an encoder network qϕ(z|x) that approx-
imates the true posterior distribution of latent variables given
input data, and a decoder network pθ(x|z) that reconstructs
the input from the latent representation. The model is trained
by maximizing the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Eqϕ(z|x) [log pθ(x|z)]−DKL (qϕ(z|x)∥p(z)) (4)

where DKL is the Kullback-Leibler divergence that
regularizes the approximate posterior qϕ(z|x) to be close
to the prior p(z), typically chosen as a standard Gaussian
N (0, I).

In the context of reinforcement learning for board games,
VAEs can be used to learn low-dimensional representations of
the state space. Given an observation tensor, the encoder ex-
tracts a compact latent representation that captures meaningful
game dynamics, which can help with policy learning.

III. METHODOLOGY/APPROACH

A. The Cathedral PettingZoo environment

To be able to train agents in the cathedral game, we
use and adapt an open source PettingZoo environment
implementation by Elliot Towers [6]. This multi-agent RL
environment allows agents to train in an adversarial setting,
placing pieces turn by turn.

Observations In the environment, the agent observes the
board through five one-hot encoded layers providing different
information (pieces and territory for both the player and the
cathedral). The observation is therefore of size 5 * (board
size, board size). The default board size is 10, but we chose
to reduce it to 8 for computational efficiency, resulting in a
vector of size (5, 8, 8) = 320 observations.

3

Actions The agent can place any of its pieces at each
turn, choosing its position and orientation. The action space
is therefore (pieces * positions * orientations) = 1753 actions
for a board size of 8. By default, there are 15 pieces, each
having their own size and shape on the board. There is an
action mask to force only valid actions by the agent.

Rewards We modified the environment to provide two
reward structures:

• Sparse Reward: A binary reward system in which the
agent receives +1 for victory and -1 for defeat (0 for
draw).

• Continuous Reward: A heuristic-based reward function
that considers both the size of the placed piece and the
amount of territory claimed. The reward for each move
is given by:

Reward = claimed territory + piece score

where the piece score is defined as:

piece score = piece size−max(legal piece sizes)

This encourages putting down larger pieces and claiming
territory. A bonus and penalty are applied (to the player
and its opponent, respectively) if an opponent’s piece has
been pushed out of the board, equal to this piece’s value.
Then the victory gives +10 and the defeat a -10 (0 for
draw).

Fig. 2. A rendered frame of the Cathedral environment [6]

Remarks The provided environment, as it does not appear
to be widely used (we could not find any existing implemen-
tation of RL algorithms), presents several issues:

• Biased starting conditions: Due to the placing of the
cathedral which was always done by player 1, the first
player has only a 37.5% win rate when two random play-
ers compete against each other. Importantly, we modified
the environment so that there was a random cathedral
initialization between the two players, restoring the
balance in the game. This is key for a self-play setup
to learn how to play the game.

• Human player vs algorithm: Numerous bugs occur in
the human player interface.

• Wrapper-related issues: Certain wrappers cause incon-
sistencies that require us to manually handle the game
logic.

B. DQN

We tested the simple sparse rewards on victory and losing
(+1/-1) without much success. We therefore decided to try
the move-based approach to encourage good behavior. It
should be noted that, in standard training, when the agent
produces a probability distribution over all possible actions,
a mask of legal actions is applied only.

An implementation of Deep Q-Networks (DQN) was devel-
oped (further detail is provided in the appendix), incorporating
a standard experience replay buffer as well as a prioritized
replay buffer (using a Sum-Tree).

The latter still requires parameter tuning to optimize per-
formance. We arbitrarily choose fixed parameters:

• Batch size of 64 for training.
• Learning rate of 10−3.
• The discount factor γ is set to 0.95, as each episode is

relatively short (approximately 18 moves), making γ18 ≈
0.4 a reasonable choice.

• The target network update frequency set to 30, based on
literature recommendations.

Key hyperparameters requiring further tuning:
• Number of episodes.
• Replay Buffer properties (size and whether prioritization

is used).
• Exploration strategy (ϵ-greedy vs Boltzmann).
The DQN agent was tested in three different training

setups:
• Self-play training: The DQN is trained by continuously

playing against itself.
• Training against a random player.
• Training with high penalization of illegal actions.

C. PPO

1) Architecture: A PPO with shared convolutional layers
for an actor and critic head was implemented. Convolutional
layers perform well for feature extraction in observation spaces
such as ours that represent five different boards.

• Shared CNN : 3 layers : Following [3], we increase the
number of channels from 3 to 64 to learn rich features

• Actor & Critic : 2 linear layers of size 512 for the actor
and critic.

2) Training setup: We train the PPO in a self-play manner
where the primary agent plays against an older version of
itself. This seemed to be standard in adversarial training
regimes. We also regularly test it against random players
during training to log progress.

PPO can be pretty unstable in an adversarial setting and with
longer episodes of 20 steps. For stability and better learning,
we implement the following elements which showcased better
results :

• Low learning rates of lcritic = 0.0002 and lactor =
0.0005 which are slightly on the lower end of the default
baseline.

4

• We wait 5 episodes before updating the policy to stabilize
the learning.

• Policy updates are done with Kepochs = 20 as default
• We use GAE with λ = 0.95 which is a default usual

value
• We do soft updates on the target where we only update

30% of the weights every 10 episodes, and a complete
update after 100 episodes

Other parameters were also fixed at standard values : ϵclip =
0.2, γ = 0.97, and an entropy coefficient of 0.01.

D. VAE

We train a simple VAE with the objective of learning
meaningful representations of the observation space, and
using it as a replacement for the convolutional layers of our
DQN and PPO.

The VAE has a latent space representation of 32, smaller
than the observation space, with the aim of learning denser
representations and potentially accelerating the learning of our
RL algorithms.

We train on 4000 games, half of which being with random
players, and the other half with a trained PPO agent, to have a
more diverse set of boards. Training is done over 300 epochs.

E. Tree methods

We also experimented with tree-based methods like min-
imax and MCTS, which yielded less significant results.
Further developments on these methods are detailed in the
appendix.

IV. RESULTS AND DISCUSSION

To perform a quantitative analysis of our tested methods,
we evaluated them using three different metrics over 10000
episodes:

• Win rate vs a random player.
• Win rate vs two competitive models.
• Average reward per episode.

A. DQN Results

Since hyperparameters are not independent and training
time ranges from 15 minutes to 3 hours, fine-tuning them
perfectly is a challenging task. However, we aimed to make
our tuning process as objective as possible.

1) Number of episodes: To evaluate the number of episodes
required for convergence, we trained a DQN model over
10,000 episodes using Boltzmann exploration, a prioritized
replay buffer, and a buffer size of 40,000 in a self-play set-
ting. However, the results remained consistent across different
scenarios.

As shown in Figure 3, the average reward stabilized be-
tween 2,000 and 4,000 episodes (but the reward itself is very
unstable). This observation is further supported by Figure 4,
where we see that the win rate against a random player
rapidly increases to between 95% and 98% in just about 1, 000
episodes.

Fig. 3. Average reward per episode during training (additional training
metrics available in the Appendix).

Fig. 4. From left to right vs. random player over 10,000 episodes: (a) Average
Reward (b) Win rate

This model reached an average reward of 2.638 and a win-
rate VS random player of 0.958%. Based on these findings, we
decided to conduct further experiments with 4,000 episodes.

2) Exploration: We compared both exploration strategies
described above, with an annealed rate (see Appendix) with a
decay rate of 500 to obtain comparable results (Table IV).

Strategy Avg reward Win rate

Playing VS Random

Epsilon 2.731 0.939
Boltzmann 2.851 0.963

Playing against each other

Epsilon -0.0239 0.488
Boltzmann -0.0236 0.512

TABLE I
COMPARISON OF EPSILON-GREEDY AND BOLTZMANN STRATEGIES.

We observe that the Boltzmann strategy outperforms
Epsilon-Greedy in both cases, achieving a higher win rate
and average reward against a random player, as well as an
advantage in head-to-head matches.

3) Replay Buffer: Classic Replay Buffer VS Prioritized
Replay Buffer (Table III):

Similarly, a Prioritized Replay Buffer gives better results
over a 4000 episodes training.

4) Ideas: Here, we explored different training strategies
inspired by the literature.

• VS Illegal: Since over 90% of initial actions were illegal,
we first trained the model to make only legal moves
(for 1500 episodes) before standard self-play training (for
2500 episodes).

5

• VS Random: Similarly, pure self-play can lead to local
optima, so we tested initial training against a random
player.

We compare these methods to a classic self-play training
baseline of 2500 episodes (Table IV).

Despite training on more episodes, the proposed methods
doesn’t give better results than classic training, illustrating
that enforcing legality early or pre-training against a weak
opponent does not provide a strategic advantage over standard
training.

B. PPO Results

Adversarial self-play training with the PPO over 10 000
episodes presented similar results to the DQN. Presenting
convergence of the rewards, value function and policy updates
at around 3000 episodes.

Fig. 5. PPO Self Play Training results with Soft Updates

The study of the policy ratio stability and the value function
were integral to the adaptation of the algorithm and the
changes made to stabilize training such as smoother policy
updates and the larger replay buffer. (See appendix 10 for value
functions, policy ratios and losses). The figure 9 show the
problems with too sudden policy changes on training, which
lead to less stability.

Winrates against random agents plateau rapidly to 98%
on average after around 900 episodes which show that the
agents have learned meaningful policies (See appendix 10).
Examining and printing out games also corroborates this claim,
where the larger pieces are put down first and territory is
conquered.

C. Representation Learning with a VAE

Training of the VAE with the 4000 games seemed to present
positive training results, with the stabilization of the loss and
a reconstruction rate of 94,3% (see Appendix).

The VAE was then used to replace the convolutional layers
of the PPO and tested as a way to encode representations for
the actor and critic heads. The VAE weights are frozen to
see if the learned representations could impact the algorithm
training.

Interestingly, training the PPO with the VAE yielded
multiple difficulties. While the learning starts at around

the same rate and with the same evolution as with the
convolutional architecture, the results become unstable in
scenarios with richer rewards. This could be due to the
encoder not being trained on sufficiently different samples,
especially samples where two good players play against each
other, i.e more advanced winning policies. It’s also worth
noting that there are no updates at each stage, and even with
these frequent weight updates of the target, the behaviour and
results of the primary and target players diverge. Detailed
analysis in the appendix 12 show that losses still fluctuate
importantly, as well as rewards and values even after 10 000
episodes.

Concerning the discrepancy in behaviour between the target
and primary agents, it is still unclear why this happens. Still
discrepancies in initialization of the VAE weights or optimizer
momentum could potentially have an impact on such small
latent spaces of 32 like we have here despite frequent weight
updates.

D. PPO vs DQN

To compare our two best models against each other, we ran
1,000 episodes with a temperature of 1 (Table II).

Strategy Avg Reward Win Rate

DQN -0.775 0.784
PPO -1.481 0.172
Draw - 0.044

TABLE II
COMPARISON OF DQN AND PPO STRATEGIES.

The results indicate that DQN significantly outperforms PPO
in win rate.

V. CONCLUSIONS

In this work, we explore reinforcement learning techniques
for playing the 2-player adversarial board game Cathedral.
We implemented and compared various algorithms, including
Deep Q-Network (DQN) and Proximal Policy Optimization
(PPO), within a customized PettingZoo environment.

DQN is extensively tested: our experiments demonstrate that
careful tuning of hyperparameters, exploration strategies, and
replay buffer techniques significantly impacts performance.
However, pre-training on legal moves or against a weaker
opponent did not yield significant improvements. PPO
presents positive results similarly to DQN after additional
modifications to stabilize learning such as soft updates, larger
buffer updates and GAE are implemented. Representation
learning is implemented through a VAE and incoporated
into the Reinforcement Learning training frameworks. While
enabling learning with denser, smaller representations and
less parameters, it presented instabilities that need to be
further studied.

Overall, this work underscores the complexities and the
different methods adapted for adversarial learning

6

REFERENCES

[1] Wikipedia contributors, “Demis Hassabis.” https://en.wikipedia.org/wiki/
Demis Hassabis.

[2] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm,” 2017.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” 2013.

[4] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” 2014.

[5] R. B. Moore, “A little history.” https://www.cathedral-game.co.nz/
about-history.html.

[6] E. Tower, “cathedral-rl.” https://github.com/elliottower/cathedral-rl,
2023.

[7] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” 2015.

[8] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2016.

[9] OpenAI, “Proximal policy optimization, spinning up documentation.”
https://spinningup.openai.com/en/latest/algorithms/ppo.html.

[10] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
2018.

[11] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2022.
[12] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”

in Machine Learning: ECML 2006 (J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou, eds.), (Berlin, Heidelberg), pp. 282–293, Springer
Berlin Heidelberg, 2006.

[13] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293–326, 1975.

VI. APPENDIX

A. DQN

1) DoubleDQN Equation:

Q(s, a)← Q(s, a)+α
(
r + γQtarget(s

′, argmax
a′

Q(s′, a′))−Q(s, a)
)

(5)
2) Prioritized Replay Buffer Equation:

P (i) =
pαi∑
k p

α
k

(6)

where:
• P (i) is the probability of sampling transition i,
• pi is the priority of transition i (e.g., |δi| + ϵ, with δi

being the TD error),
• α controls the degree of prioritization (typically α = 0.6).
3) Boltzmann Equation:

P (a) =
exp(Q(s, a)/T)∑
a′ exp(Q(s, a′)/T)

(7)

where T is the temperature parameter controlling
exploration.

4) Network Architecture: The Deep Q-Network (DQN)
used in our experiments is a convolutional neural network
(CNN) designed to process a (10, 10, 5) input observation
space and output Q-values for n possible actions. It consists
of:

• Convolutional Feature Extractor:
– 4 convolutional layers with ReLU activations:
∗ Conv1: 5 → 32 filters, 3 × 3 kernel, stride 1,

padding 1
∗ Conv2: 32 → 64 filters, 3 × 3 kernel, stride 1,

padding 1
∗ Conv3: 64 → 64 filters, 3 × 3 kernel, stride 1,

padding 1
∗ Conv4: 64 → 128 filters, 3 × 3 kernel, stride 1,

padding 1
– The output feature maps are flattened into a 1D

vector.
• Fully Connected Decision Module:

– FC1: input size→ 1024, ReLU
– FC2: 1024→ 2048, ReLU
– FC3: 2048→ n (final output layer for Q-values)

5) Training metrics example: See Figure 6.

Fig. 6. From left to right: (a) Loss (b) Exploration rate decay (c) Winrate (d)
Steps per episode

6) Decay Equations:

ϵ(episode) = ϵfinal + (ϵstart − ϵfinal) · e
− episode

ϵdecay (8)

T (episode) = Tfinal + (Tstart − Tfinal) · e
− episode

Tdecay (9)

https://en.wikipedia.org/wiki/Demis_Hassabis
https://en.wikipedia.org/wiki/Demis_Hassabis
https://www.cathedral-game.co.nz/about-history.html
https://www.cathedral-game.co.nz/about-history.html
https://github.com/elliottower/cathedral-rl
https://spinningup.openai.com/en/latest/algorithms/ppo.html

7

Strategy Avg reward Win rate

Playing VS Random

Classic Replay Buffer 2.699 0.961%
Prioritized Experience Replay 2.851 0.963%

Playing against each other

Classic Replay Buffer -0.008 0.465%
Prioritized Experience Replay 0.008 0.534%

TABLE III
COMPARISON OF CLASSIC AND PRIORITIZED EXPERIENCE REPLAY.

7) Results for Buffers: See TABLE III.
8) Results for Training Setup Tests: See TABLE IV and

Fig 11

Strategy Avg reward Win rate

Playing VS Random

Illegal 1.654 0.927
Random 2.468 0.949
Baseline 2.912 0.962%

Playing VS Baseline

Illegal -0.222 0.415
Random -0.052 0.450

TABLE IV
COMPARISON OF ILLEGAL PLAY, RANDOM PLAY VS BASELINE.

Fig. 7. Average Rewards Training VS Random then classic self-play

Fig. 8. Average Rewards Training VS Illegal Moves then classic self-play

B. PPO

PPO Update Equations

PPO policy θ and value function ϕ. One or multiple episodes
Dk = {τi} are added to a buffer by running the policy and then
the PPO is updated at the end and goes through the trajectories,
computing advantages Ât and discounted rewards R̂t before
updating θ (actor) and ϕ

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ(at|st)
πθk(at|st)

Aπθk (st, at),

g(ϵ, Aπθk (st, at))

)
(10)

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ(st)− R̂t

)2
,

Detailed PPO Results

Fig. 9. PPO Self Play Training with complete updates every 10 episodes

8

Fig. 10. PPO training results over 10 000 episodes of self-play and soft
updates

VAE

Fig. 11. VAE training and evaluation loss

C. Tree Methods

1) Monte-Carlo Tree Search: Monte-Carlo Tree Search
(MCTS) is a decision tree exploration method widely used
in game-playing applications, notably in Go. It constructs
a search tree iteratively through random simulations (play-
outs), estimating move quality and guiding exploration toward
promising areas.

MCTS consists of four main steps:
• Selection: A path is selected from the root node based

on a tree policy.
• Expansion: If the leaf node is not terminal, new child

nodes are added.

Fig. 12. PPO VAE Training over 10 000 episodes : updates every step

Fig. 13. PPO VAE Training over 10 000 episodes : updates every step

• Simulation (Rollout): A random playout estimates the
outcome from the new node.

• Backpropagation: The simulation results update the
statistics of visited nodes.

A key variant, Upper Confidence bounds applied to Trees
(UCT) [12], balances exploration and exploitation.

A deep convolutional network typically processes the cur-
rent state s and outputs the Policy Output P (s) (probability
distribution over actions) and Value Output V (s). Training in-
volves optimizing the policy output via cross-entropy loss and
the value output via mean squared error loss (see Appendix).

Lpolicy = −
∑
a

πa logPa, Lvalue = (z − V (s))2. (11)

The final loss function is a sum of both components.

We were unable to implement an effective training
process for the AlphaZero MCTS algorithm due to
computational constraints. Despite using the 16-core
computers available at École Polytechnique (Intel® Xeon®

9

W-1270P CPU @ 3.80GHz), and attempting parallelization,
the action space of 1,753 proved to be excessively large
(even compared to chess), making training infeasible. The
program struggled to complete a single full simulation within
an hour. Additionally, the lack of control over the computing
resources at École Polytechnique—frequent shutdowns and
shared usage with other students further hindered our ability
to train the model efficiently.

2) Minimax with Alpha-Beta Pruning: The Minimax
algorithm with Alpha-Beta Pruning is a baseline tree search
method used to determine the best move in zero-sum games
such as chess or go. It is based on a recursive exploration of
the game tree, simulating the moves of both opponents: the
maximizing player, who seeks to optimize the evaluation of the
position, and the minimizing player, who attempts to reduce it.

The Alpha-Beta extension [13] optimizes Minimax by
reducing the number of nodes evaluated. This process
maintains two bounds: α, the best value guaranteed for the
maximizing player, and β, the best value guaranteed for the
minimizing player. If, during the exploration of a branch,
it is determined that the potential value cannot improve the
result for the current player (i.e., when α ≥ β), the branch is
pruned, thus avoiding unnecessary computation.

The main steps of the algorithm are as follows:
1) Recursive exploration: The game tree is explored in

depth by alternating between maximization and mini-
mization phases.

2) Updating bounds: At each node, the values of α and
β are updated based on the evaluations of the subtrees.

3) Pruning: If, at any node, α exceeds or equals β (α ≥ β),
the exploration of that subtree is halted, as it cannot
affect the final decision.

4) Leaf evaluation: Upon reaching a leaf node or a maxi-
mum depth, a heuristic evaluation function estimates the
quality of the position.

In practice, the high dimensionality of the action space
(approximately 1700 moves) makes exploring the move tree
particularly slow even for shallow depths (2 or 3 moves ahead).
To achieve reasonable computation speeds, the search depth
is dynamically adjusted based on the number of legal moves
available before beginning the search. In terms of performance,
although it is challenging to run many simulations (e.g.,
simulating a game lasting 5 minutes), in a set of about a dozen
simulations the Alpha-Beta algorithm consistently won against
a player making random moves.

	Introduction
	Learning 2-Player Adversarial Games

	Background
	The Cathedral Game
	Deep Q-Learning
	Replay Buffer and Target Network
	Double DQN

	Proximal Policy Optimization (PPO)
	Algorithm structure
	Generalized Advantage Estimation (GAE)

	Representation Learning with a Variational Autoencoder

	Methodology/Approach
	The Cathedral PettingZoo environment
	DQN
	PPO
	Architecture
	Training setup

	VAE
	Tree methods

	Results and Discussion
	DQN Results
	Number of episodes
	Exploration
	Replay Buffer
	Ideas

	PPO Results
	Representation Learning with a VAE
	PPO vs DQN

	Conclusions
	References
	Appendix
	DQN
	DoubleDQN Equation
	Prioritized Replay Buffer Equation
	Boltzmann Equation
	Network Architecture
	Training metrics example
	Decay Equations
	Results for Buffers
	Results for Training Setup Tests

	PPO
	Tree Methods
	Monte-Carlo Tree Search
	Minimax with Alpha-Beta Pruning

